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The characteristic frequencies of turbulent pulsations in a bounded viscous 
fluid flow are examined analytically. 

It is shown in [i] that the most promising direction in the creation of a theory of tur- 
bulence is the study of the streampulsating parameters. Special attention is paid here to 
the mutual relationship between the turbulent pulsations and the acoustic perturbations. 

It is known from experimental investigations that there are characteristic maximum in 
the pulsations spectra in the boundary layer [2] and that the boundary layer is reponsive to 
external acoustic action in a definite frequency band [3]. These phenomena are explalned by 
the existence of a quasiordered stream structure--systems of large-scale discrete vortices. 
Associated with the origination of such vortices is the transition from the laminar to the 
turbulent modes of motion. However, no theory connecting the stability of fluid motion, the 
integral and pulsating turbulent flow characteristics and their quasiordered structure has 
yet been developed. 

The effect of long-range turbulent pulsations, the emission of oscillations by a dis- 
crete vortex which will propagate in all directions including along the normal to the stream- 
lines, is examined in [4]. The physical nature of such waves has not yet been explained 
fully. When the fluid flow is bounded by a solid wall it is necessary to consider resonance 
interaction between the oscillations source and its mirror image relative to the wall, an 
imagninary source. A quasistationary pulsating field occurs in the presence of a set of os- 
cillationsources in the stream. The characteristic (resonance) frequency of the oscillations 
at a point of the stream is here related to the distance from the wall. 

The process of turbulent vortex development includes their nucleation on the outer boun- 
dary of the viscous sublayer, removal from the wall under the effect of Zhukovskii lift force, 
and growth of the linear dimensions associated with the pairwise merger of the vortices. A 
sufficiently strict determination of the vortex dimensions, their lifetime, and the charac- 
teristic frequency of the pulsations [5] permits the assumption that this process is a stage 
of the self-oscillation process in which feedback is accomplished by the long-range waves. 

Therefore, in the subsequent computations we shall start from the assumption that the 
growth and development of turbulent vortices are interrelated with the pulsating field, while 
the zone of quasiordered fluid motion agrees with the resonance zone. 

In the near-wall domain the resonance zone is bounded by the value of the maximum turbu- 
lent pulsation frequency and in the outer boundary-layer domain by long-range wave damping. 
Special experiments are necessary for an accurate determination of these limits. As yet, 
we shall start from the assertion in [6] that quasiordered structures induce a fundamental con- 
tribution in the production of turbulent tangential stresses. Then there follows from simi- 
larity considerations that the distance from the wall to the lower boundary of the resonance 
zone is proportional to the viscous sublayer thickness, and to the upper boundary is propor- 
tional to the turbulent boundary layer thickness, i.e., 

kl ~< y ~< k~6 (i) 
U~ 

The transition to a state of quasiordered motion should be related to a qualitative 
change in the magnitude of the tubulent tangential stress. In this connection we select the 
point of the beginning of the logarithmic section of the velocity profile y+ = 30 as the 
lower boundary. Then kl = 30. 
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The velocity profile in the outer domain of a turbulent boundary layer deviates "up- 
ward" from the logarithmic curve and the miscibility factor diminishes. However, these facts 
do not permit exact determination of the upper boundary of the resonance zone. For a numer- 
ical example we select the value k2 = 0.6 by noting the stability of this boundary. 

Starting from the proposed model, we determine the boundary of the turbulent pulsation 
frequency band. We shall consider the initial angular velocity of the vortex ~ to be deter- 
mined by the gradient of the average velocity at the point of formation ~ = i/2.d~/dy. The 
frequency of the oscillations radiated by a nonsy~metric rotating vortex is f = ~/2~. 

The gradient of the average velocity reaches the maximum value at the wall. Therefore, 
the vortices being formed at the wall will radiate oscillations at the maximal frequency 

1 dY _ 1 u~ ( 2 )  
[ m a ~ = " ~ -  -dyy=0 4a v ' 

where fmax is the upper bound of the turbulent pulsation frequency band. 

In a first approximation we assume the propagation velocity of the oscillations in the 
transverse direction a to be independent of the distance from the wall. Then the frequencies 
fn = na/2y, where n = i, 2, 3, .... , will be resonant for oscillation sources that are a dis- 
tance y from the wall. Since the wave damping factor grows in proportion to the square of 
the frequency [7], only the least resonance frequency (the first harmonic) will be of prac- 
tical value 

f~ = a/2y.  (3) 

E q u a t i n g  (2) and (3) and s u b s t i t u t i n g  t h e  l e a s t  r e s o n a n c e  d i s t a n c e  f~qm ( 1 ) ,  we o b t a i n  
a f o r m u l a  to  d e t e r m i n e  t h e  p r o p a g a t i o n  v e l o c i t y  o f  t h e  o s c i l l a t i o n s  

kx u 
a = 2"--~" *" (4) 

I n  t u r b u l e n t  f l o w s  t h e  q u a n t i t y  a a lways  t u r n s  ou t  t o  be  l e s s  t h a n  t h e  c h a r a c t e r i s t i c  
s t r e a m  v e l o c i t y ,  i . e . ,  a c c o r d i n g  t o  t h e  t e r m i n o l o g y  o f  [8] t h i s  i s  t h e  p r o p a g a t i o n  v e l o c i t y  
of pseudosubsonic oscillations. 

The minimal frequency pulsations interact with vortices on the outer boundary of the 
resonance zone (i). Taking account of (3) and (4) we obtain 

f ~ . =  ~ u, (5) 
4~k2 8 

Using the formulas obtained and t h e  known semlempirlcal relationships [9], we compute 
the boundary layer on a semilnflnite smooth plate. In this case the dynamical velocity is 

u ,  = V ' cd2  u~. (6) 

From (2) and (6), the Strouhal number corresponding to the maximal pulsation frequency 
i s  

The coefficient of local friction for a laminar boundary layer is c~ = 0.664Re -e's In this 
case the maximum dimensionless pulsatlon frequency is 

Sh~.x = 2.64.10-S.Re ~ . (8) 

A c c o r d i n g  t o  t h e  P r a n d t l  t h e o r y ,  f o r  a t u r b u l e n t  b o u n d a r y  l a y e r  

c; = 5.92.10 -2. Re - ~  ,2. (9) 

Then t h e  u p p e r  bound o f  t he  f r e q u e n c y  band i s  f rom (7) 

ShTa~ ---- 2.36.10 -s- Re ~ s (10) 

The dependences (8) and (i0) are, respectively, represented by the curves i and 2 in 
the figure. 
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Fig. i. Dependence of the dimensionless 
turbulent pulsation frequencies Sh on the 
Reynolds number Re for flow around a smooth 
plate. Computation~ i) using (8); 2) using 
(lO); 3-5) using (13) for Recr = 3.2| s, 
and 5.10". Experiment: 6) from data in [2]; 
7) from [3]. 

From (5) and (6) the Strouhal number corresponding to the minimum turbulent pulsation 
frequency is 

S h m | n = f m J n I . =  kl x ~ / c ~  
u~ 4~k~ 6 (Ii) 

In  t h i s  c a s e  6 i s  t h e  t u r b u l e n t  b o u n d a r y - l a y e r  t h i c k n e s s  which  does  n o t  s t a r t  f rom t h e  p l a t e  
leading edge. It can be determined from the relationship 

6 0,38 D 
x -- Re ~ Re (12) 

The c o e f f i c i e n t  D depends  on t h e  c r i t i c a l  Reyno lds  number .  Thus ,  D = 5800 f o r  Recr  = 3 . 2 . 1 0  s .  

Substituting the values of efT and 6 from (9) and (12) and the numerical values of the 
coefficients k, and ka into (Ii), we obtain the following expression for the lower boundary 
of the turbulent pulsation spectrum 

0.685REO. 9 
Shm~ = 0.38 Re ~  D " (13) 

Graphs of the dependence (13) for values of Recr equal to 3.2.10", 4-i0", and 5-10" 
are shown by curves 3, 4, and 5, respectively. Curve 3 intersects the lines i and 2 at the 
points B and A, respectively. 

It is seen from the figure that for Re < Re A the single possible mode of motion is 
laminar. The pulsations originating here have a frequency that does not exceed Sh~a x and 
damp out rapidly. To the right of the point A pulsations in the frequency range between 
Shmi n and Shmax T are possible inprinciple, but for Re < Re B the energy of the stream itself 
is inadequate to maintain such oscillations. The velocity profile in which 6 + = 30 would 
correspond to the turbulent flow characterized by the point A in the figure. Such a veloc- 
ity distribution is impossible in actually existent turbulent flows. In a turbulent boundary 
layer 6 + = 194 for the low value of the critical Reynolds number Recr= 3.2.10 s. 

And, finally, for Re > Re B the velocity gradient at the wall is adequate for pulsations 
at a "resonating" frequency to occur. If the vortex natural oscillations enter into reso- 
nance with a quasistationary pulsating field, then the growth of turbulent pulsations starts 
in the boundary layer, the velocity diagram changes, and the velocity gradient at the wall 
increases. Consequently, the laminar boundary layer goes over into a turbulent layer with 
pulsations in the range from Shmi n to Shmax T. 

It should be noted that for this selection of the coefficients k, and k2 the coordinates 
of the intersections of curves 3, 4, and 5 (Fig. I), constructed for different values of Recr, 
with the line 1 are quite close to the given v&lues of Recr. Small discrepancies can be ex- 
plained by the approximate nature of the semiempirical formulas used. Such agreement evi- 
dently objectively reflects a substantial interaction between the pulsation spectra and the 
transition from the laminar to the turbulent motion regimes. 

As was noted in [5], experimental confirmation of the relations obtained can be executed 
by both direct and indirect methods. The direct method is a experimental study of the tur- 
bulent pulsation spectra. Results of investigating the energy spectra of longitudinal ve- 
locity pulsations in the boundary layer on a plate are presented in [2]. It is shown that 
such spectra have several maximums, where the specific fraction of each of the maximums 
varies with the change in distance from the wall y+. The dimensionless pulsation frequencies 
Sh that correspond to the principal energy maximum are shown by the points 6 in the figure. 

647 



Equivalent values of the number Re were calculated from (9) in this case, from experimentally 
determined values of cfT. 

The indirect method is to determine the boundary layer reaction to external acoustic 
perturbations of different frequencies. Points 7 at which the maximum growth in pulsations 
is observed, according to [3], under the effect of an external acoustic field, are also pre- 
sented in the figure. 

As is seen from the figure, the experimental points are lumped in the band between Shmin 
and Shmax T, near its lower boundary. It can then be concluded that generation of "long-range 
waves" occurs most intensively in the outer turbulent boundary layer region, which is re- 
lated, in all probability, to destruction of the discrete vortices. Experimental and the- 
oretical investigations of the transients within a discrete vortex are needed for clarifica- 
tion of the question of the nature of such waves. 

Therefore, the assumption that the origination of turbulence is associated with reso- 
nance phenomena permits a sufficiently accurate determination, despite a number of simpli- 
fying assumptions, of the characteristic turbulent pulsation frequencies and an explanation 
of the transition from the laminar to the turbulent motion regimes. 

NOTATION 

x and y, longitudinal and transverse coordinates; ~,boundary-layer thickness on the 
plate; u, average velocity at a point of the stream; u,, dynamical velocity; u=, free stream 
velocity far from the plate; a, propagation velocity of the oscillations; ~, fluid kinematic 
viscosity; ~, vortex angular velocity; f, pulsation frequency; cf, local friction coefficient; 
k~, k=, D, dimensionless coefficients; y+ = u,y/~, dimensionless distance from the wall; 6 + ffi 
u,6/v , dimensionless boundary-layer thickness; Re = u~x/~, Reynolds number; Sh = fx/u=, 
Strouhal number. Superscripts: l, refers to the laminar and T to,the turbulent boundary 
layer. 
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